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MANUSCRIPT 
Introduction 

Rates of first-time hospitalization for acute myocardial infarction (MI) and subsequent 30-day 

mortality have declined by more than 50% in Denmark over the last three decades.1 Still, 15% of 

Danish patients with first-time MI die within the first 30 days.1 Moreover, short-term mortality is 

27% among patients with a very severe comorbidity burden, making comorbidity burden a strong 

predictor of mortality.1 The prevalence of a high comorbidity burden in patients with MI has 

increased over the last three decades1 and with ageing of the population this prevalence is likely to 

become even higher.2-4 There is thus a compelling need to better understand the effect of a 

comorbidity burden on MI prognosis. 

Comorbidity indices (prediction models) are used widely for this purpose. Indices have been 

developed specifically for cardiac patients5-8 and others in mixed populations with successive 

testing in cardiac patients.9-12 The Charlson Comorbidity Index (CCI) is one of the most commonly 

used comorbidity indexes in research.9 The CCI was initially developed using a small patient group 

consisting of 559 patients admitted to a medical center during a 1-month period in 1984.9 Since 

then, the impact of comorbidities on survival has changed, with improvements in prophylaxis and 

treatment leading to longer survival.1 Also, the CCI does not include psychiatric diagnoses. 

Another common comorbidity index is the van Walraven-weighted version of the Elixhauser 

index.10 This index was also developed using a mixed patient group to predict in-hospital mortality. 

This may not be ideal for assessing the comorbidity burden in Danish MI patients either. 

In the current study, we aimed to construct comorbidity indices to adjust accurately for 

confounding variables in prognosis studies of MI patients. We conducted a population-based cohort 

study to develop and validate comorbidity-based prognostic indices that predict 1-year mortality 

after first-time MI. We developed indices both with and without cardiovascular comorbidities. 
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Methods 

Setting and data sources 

The Danish National Health Service provides universal tax-supported health care, guaranteeing free 

access to general practitioners and hospitals in Denmark.13 All Danish residents are assigned a 

unique central personal registry (CPR) number at birth or upon immigration.14 This number is used 

to record health data in Danish registries, facilitating registry linkage at the individual level.14 The 

registries used in the current study are described below. 

The Danish Civil Registration System contains data on birth, vital status and migration for the 

entire Danish population since 1968, with daily updates.14 

The Danish National Patient Registry (DNPR) includes data on all non-psychiatric hospital 

admissions in Denmark since 1977, and on outpatient clinic and emergency room contacts since 

1995.15 Each contact is registered using one primary diagnosis and potentially several secondary 

diagnoses classified according to the International Classification of Diseases, Eighth Revision 

(ICD-8) until the end of 1993 and the Tenth Revision (ICD-10) thereafter.15 

The Aarhus University Prescription Database contains data on prescriptions. The type of drug 

prescribed (using the Anatomical Therapeutic Chemical classification system), and the date the 

drug was dispensed are transferred electronically from pharmacies to the prescription database.16 

The Clinical Laboratory Information System Research Database (LABKA) contains test results 

from all laboratory analyses performed on blood samples drawn at hospitals or by general 

practitioners and submitted to departments of clinical biochemistry in the North and Central 

Denmark Regions.17 Complete geographical coverage was achieved in 1997 in the North Denmark 

Region and in 2000 in the Central Denmark region.17 
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Study population 

We used the DNPR to identify a population-based cohort consisting of all patients aged 15 years or 

older admitted with a first-time hospitalization for MI (ICD-10: I21) in the North and Central 

Denmark regions between 1 January 2000 and 31 December 2013. To ensure that we identified 

incident MI diagnoses, we excluded patients with previous inpatient or outpatient MI diagnoses 

from any Danish hospital recorded in the DNPR. Of note, the DNPR included MI patients who died 

in the ambulance on the way to the hospital or during admission, but not if they died at home. 

 

Outcome 

The outcome of interest was time to all-cause mortality within 1 year of hospital admission, which 

we ascertained through linkage to the Danish Civil Registration System.14 Follow-up continued 

until 31 December 2014, ensuring that all patients could potentially be followed for one year 

without missing data. 

 

Potential predictors 

A list of comorbidities was assembled from previously constructed indices and clinical knowledge. 

To identify all medical conditions that could have an impact on the prognosis after MI, medical 

conditions included in the ICD-10 were reviewed thoroughly. Conditions that could be considered a 

symptom or a complication of MI, such as cardiac shock or arrest, were not included.18 

We obtained information on comorbid conditions from hospital inpatient and outpatient clinic 

diagnoses recorded in the DNPR within the 5 years before hospitalization for MI. We also included 

diagnoses recorded during the index admission for MI, except for diagnoses for possible 

complications of MI, antithrombotic treatment, or associated immobilization. Complications 

included stable angina pectoris, heart failure, deep venous thrombosis in a lower limb, pulmonary 
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embolism, atrial fibrillation, heart block, ventricular tachycardia, cardiac valve disease, and stroke. 

These conditions were therefore only included if they were recorded before MI hospitalization. 

Based on Danish 5-year mortality estimates,19 we categorized cancer as high-risk cancer 

(survival <30%) or lower-risk cancer (survival ≥30%). High-risk cancers included cancers of the 

hypopharynx, esophagus, stomach, liver, gallbladder, pancreas, trachea and lung, as well as 

mesothelioma, acute myeloid leukemia, unspecified leukemia, and secondary cancer. All remaining 

types of cancer were considered lower-risk cancers. 

Certain conditions, such as diabetes, chronic pulmonary disease, and hypertension, may be 

treated solely in general practice and thus not be registered in the DNPR.15 The same applies for 

conditions treated at psychiatric hospitals such as affective disorders and schizophrenia. We 

therefore supplemented records from DNPR with information from the LABKA database17 or the 

Aarhus University Prescription Database (Table 1).16 

The final list of potential predictors included 41 individual comorbidities (Table 1). In addition 

to constructing the DANish Comorbidity index for Acute Myocardial Infarction (DANCAMI) 

accounting for both cardiovascular and non-cardiovascular comorbidities, we wished to help 

researchers planning to study the effect of individual cardiovascular conditions separately while 

adjusting for non-cardiovascular comorbidities. From the 41 comorbidities, we therefore identified 

24 non-cardiovascular conditions for inclusion in a second comorbidity index restricted to non-

cardiovascular conditions (restricted (r)DANCAMI). 

For comparison with our own comorbidity scores, we calculated patients’ CCI9 and Elixhauser10 

scores. As in the original CCI weighting paper,9 we based the CCI score on 18 comorbidities (MI 

excluded). For the Elixhauser index, we based the score on 30 comorbidities. For descriptive 

statistics, we categorized both CCI scores (0, 1, 2, 3+) and Elixhauser scores (≤0, 1-5, 6-13, 14+). 
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We treated scores from both indices as continuous variables for predictive validation models and 

estimating nonparametric correlation with the DANCAMI and the rDANCAMI. 

 

External validation cohort 

We validated the performance of the DANCAMI and the rDANCAMI using patients diagnosed 

with first-time MI in New Zealand between 1 January 2007 and 31 December 2016. We used the 

unique New Zealand National Health Index (NHI) number, assigned to patients at entry into the 

public health system (>98% of the population),20 to link the New Zealand National Minimum 

Dataset (hospital inpatient data),20 the Mortality Collection (vital status),21 and the Pharmaceutical 

Collection (dispensed prescriptions).22 The National Minimum Dataset includes nationwide 

information on all patients discharged from publicly funded hospitals, including admission dates, 

primary diagnoses, and secondary diagnoses (i.e., comorbidities).20 Except for HbA1c data (which 

were unavailable), we designed the validation cohort using an approach identical to that used for the 

Danish MI cohort, including eligibility criteria, outcome, and definitions of baseline characteristics. 

 

Statistical analysis 

Model development 

We defined the outcome as time to all-cause mortality within one year from the date of MI hospital 

admission. We calculated frequencies of categorical covariates and the median and interquartile 

range of age. We used Cox regression models adjusted for sex and age to compute hazard ratios 

(HRs) with 95% confidence intervals (CIs) for the minimally-adjusted association between each 

comorbidity and 1-year mortality. 

For selection of variables to include in the complete DANCAMI, we included all 41 available 

comorbidities (both cardiovascular and non-cardiovascular conditions), and sex and age in 
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multivariable Cox models, regardless of the results from the minimally-adjusted analyses.23 We 

used fractional polynomials24 to examine the assumption that age had a linear association with 1-

year mortality in multivariable models and found it valid. We eliminated comorbidities with a HR 

<1.10 or a 95% CI that overlapped 1, and fitted revised models with the remaining comorbidities, 

and sex and age. We repeated this procedure until the models included only comorbidities with a 

HR ≥1.10. We tested the proportionality assumption using the global test based on scaled 

Schoenfeld residuals25 and with log-log plots for variables that appeared non-proportional. We 

assigned weights to each comorbidity in the final indices by multiplying the beta coefficient from 

the multivariable models by ten and rounding to the nearest integer to yield the score components. 

The score components were added to form the final score.26,27 We repeated the above steps for the 

rDANCAMI model, including only the 24 non-cardiovascular comorbidities. 

 

Model performance 

We evaluated the performance of the DANCAMI/rDANCAMI in the Danish MI cohort for internal 

validation and in the New Zealand MI cohort for external validation. 

We assessed performance in the Danish MI cohort using the following statistics: (1) a modified 

version of Nagelkerke’s R2 to measure overall performance with explained variation;28 (2) Harrell’s 

C-statistic to measure discriminative ability, for binary outcomes, Harrell’s C-statistic is equivalent 

to the area under the Receiver Operating Characteristic curve and indicates the proportion of all 

pairs of patients in which the patient who died first had lower predicted mortality;23 (3) five 

different predictive Cox regression models to contrast the performance measures in the baseline 

model (age and sex) vs. the baseline model plus the CCI, Elixhauser, DANCAMI, or rDANCAMI 

score; (4) the integrated discrimination improvement (IDI) and the continuous Net Reclassification 

Index (NRI) to compare the baseline model with each of the four comorbidity models. IDI and NRI 
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indicate how much a predictor adds to a model’s discriminatory power and are joint measures of a 

model’s comparative improvement in sensitivity and specificity.29,30 The NRI represents the net 

proportion of patients with a change in predicted risk in the correct direction when the comorbidity 

score is added to a baseline model containing age and sex.29 The IDI integrates the NRI over all 

possible cut-offs for the probability of an outcome and is the difference between predicted 

probabilities in those who do and those who do not experience the outcome. It is identical to the 

difference in discrimination slopes of two models.30 A positive NRI or IDI indicates better 

prediction in the newer model than in the comparison model. 

 

Sensitivity analyses 

We examined how the DANCAMI/rDANCAMI performed when restricted to selected populations. 

We measured the performance in men and women separately; among patients aged 75 or above; and 

among patients surviving the initial MI hospitalization. 

 

External validation 

We estimated the predicted probability of 1-year mortality in the New Zealand MI cohort by using 

the score components determined during the DANCAMI/rDANCAMI development. We then 

compared the predicted probabilities with actual outcomes in the New Zealand cohort, using the 

same methods, performance validations, and sensitivity analyses described above. Within the New 

Zealand MI cohort, we also measured performance in self-reported ethnicity groups (European, 

Maori, Pacific, Indian, and Chinese/other Asian). 

All statistical analyses were conducted using Stata Version 14.2 (Stata Corp, College Station, 

Texas, USA). The study was approved by the Danish Data Protection Agency (record number 

2013-41-1924). 
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Results 

Development 

The Danish MI cohort included 36,685 MI patients (61% men) with a median age of 72 years 

(interquartile range: 61-81 years). Table 1 presents prevalence and associations with 1-year 

mortality (adjusted for age and sex) for each comorbidity. The most prevalent comorbidity in the 

population was hypertension (53%), followed by chronic pulmonary disease (22%) and stable 

angina pectoris (19%). 

The final number of comorbidities included in the DANCAMI was 24 (Table 2), and the final 

number included in the rDANCAMI was 17 (Table 3). In both models, high-risk cancer received 

the highest score, with a severity weight of 10. Other comorbidities with a high severity weight 

were schizophrenia, hemiplegia, moderate to severe liver disease, and chronic pancreatitis, all 

receiving a severity weight of 5 or above in both indices. 

One-year mortality in the Danish MI cohort was 24% (Table 4). Among members of the cohort, 

71% had at least one cardiovascular or non-cardiovascular comorbidity, while 43% had at least one 

non-cardiovascular comorbidity (Table 4). Survival decreased with increasing DANCAMI scores, 

although for rDANCAMI it was similar for patients with scores of 1-2 and 3-4 (Figure 1). 

 

Performance 

Compared with a baseline model containing only age and sex, a prediction model with age, sex, and 

DANCAMI score was 1.04 times better at discriminating between patients with a high and a low 1-

year mortality risk (C-statistic: 0.753) (Table 5). The explained variance (R2) was 1.20 times that in 

the baseline model (R2: 0.332). When the DANCAMI score was added to the baseline model, the 

IDI was 0.054 and the total NRI was 0.519, with 77% of non-events and 49% of events receiving a 

better predicted probability of 1-year mortality (i.e., improved discrimination) compared with 
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predictions from the baseline model. Compared with the CCI and the Elixhauser index, DANCAMI 

was superior in all four performance measures (Table 5). 

A prediction model containing age, sex, and the rDANCAMI score was also superior in all four 

performance measures compared with the CCI and the Elixhauser index, but not when compared 

with the DANCAMI (Table 5). The rDANCAMI discriminated 1.03 times better than the baseline 

model (C-statistic: 0.746) and R2 was 1.15 times higher than for the baseline model (R2: 0.318). 

When the rDANCAMI score was added to the baseline model, the IDI was 0.038 and the total NRI 

was 0.428, with 68% of non-events and 54% of events receiving a more correct predicted 

probability of 1-year mortality. Overall, the Elixhauser index had the poorest performance in all 

measures compared with the baseline model (Table 5). 

 

External validation 

The New Zealand MI cohort included 75,069 MI patients. One-year mortality was lower than in 

Denmark (Table 4). The proportion of men was 59%, and the median age was 71 years. The 

proportion of MI patients with at least one comorbidity (DANCAMI >0) was lower (67%), but 

higher in MI patients with at least one non-cardiovascular comorbidity (rDANCAMI >0) (47%). As 

in the Danish MI cohort, the two most prevalent comorbidities were hypertension (38%) and 

chronic pulmonary disease (17%). The third most prevalent comorbidity was diabetes with end-

organ failure (16%) (Table 4). 

In the New Zealand MI cohort, DANCAMI scores also added to the predictive performance 

compared with the baseline model. Discrimination was 1.07 times that of the baseline model (C-

statistic 0.773) and R2 was 1.32 times that of the baseline model (R2: 0.373). IDI was 0.079 and 

NRI was 0.682, with 78% of non-events and 56% of events receiving a more correct predicted 

probability of 1-year mortality compared with the predictions of the baseline model. Performance of 
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the CCI and the Elixhauser index was nearly identical to that of DANCAMI, except for NRI where 

the CCI performance was lower than both the DANCAMI and the Elixhauser index (Table 5). 

rDANCAMI performance was lower compared with the other three indices (Table 5). 

 

Sensitivity analyses 

In the subpopulation analyses, the models performed better for males than for females. However, 

this finding was mostly attributable to the baseline model and not the added comorbidity score 

(Table 6a and 6b). The models performed best among patients surviving the initial MI 

hospitalization and worst among patients aged 75 or older. We observed this pattern in both the 

Danish and the New Zealand MI cohorts (Table 6a, 6b, 7a and 7b). In the New Zealand MI cohort, 

DANCAMI had the best performance in the European ethnicity group, while the Elixhauser index 

outperformed the other comorbidity indices in the other ethnicity groups (Table 8a and 8b). 

 

Discussion 

We developed two comorbidity indices predicting 1-year for mortality after MI based on (1) any 

type of comorbidity (DANCAMI), or (2) non-cardiovascular comorbidities alone (rDANCAMI). In 

a Danish MI cohort, our indices outperformed other common comorbidity indices. In the context of 

external validity, DANCAMI also showed satisfactory performance for MI patients in New 

Zealand. Thus, DANCAMI provides a valuable approach to adjusting the impact of a comorbidity 

burden on 1-year mortality in future MI prognostic studies. 

To our knowledge, rDANCAMI is the first comorbidity index for MI patients to include only 

non-cardiovascular comorbidities. However, other comorbidity indices have been developed 

specifically for MI patients. A 1994 US study used Medicare data to develop a comorbidity index 

predicting 2-year mortality in MI patients.5 Patients were diagnosed in 1987 and all were 30-day 
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survivors; thus, the index may not be generalizable to all MI patients. A Chinese comorbidity index 

was developed in 2016 to predict in-hospital mortality in MI patients admitted to a Beijing hospital 

during 2006-2010.6 The investigators aimed to develop a method to adjust for heterogeneity 

between hospitals in China. In contrast to the DANCAMI, the Chinese index includes conditions 

such as cardiac arrest and shock. We excluded these conditions, as they could be complications of 

MI. A Spanish comorbidity index was developed in 2011 based on patients with non-ST-segment 

elevation acute coronary syndrome who were hospitalized between 2002 and 2008.7 The Spanish 

index does not generalize to all MI patients, since its focus is patients with non-ST-segment 

elevation acute coronary syndrome. Moreover, the development cohort included only 1017 patients. 

Finally, a 2001 Canadian study developed two separate comorbidity indices predicting 30-day and 

1-year mortality among MI patients with age group and sex included in the indices.8 Unfortunately, 

the authors reported only regression coefficients and odds ratios with 95% CIs, without generating a 

simpler scoring system. 

Unlike other comorbidity indices, both the DANCAMI and the rDANCAMI include multiple 

mental and behavioural disorders, including alcohol/drug abuse, schizophrenia and affective 

disorders, which are assigned relatively high weights of 3 to 5. In some indices, these disorders 

were not included or not considered for inclusion.6-9 The Elixhauser index10 and the 1994 US study5 

both include psychiatric diagnoses. In the Elixhauser index, drug abuse and depression score less 

than zero, while alcohol abuse and psychoses have a score of zero. In the US study, the prevalence 

of these disorders was very low compared with the Danish MI cohort. This could be due to use of 

different definitions of these diagnoses. 

Both the DANCAMI and the rDANCAMI showed higher discrimination in the New Zealand 

validation cohort than in the development cohort, which was unexpected. However, the CCI and the 

Elixhauser index also showed higher discrimination in the New Zealand MI cohort compared to the 
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Danish MI cohort. These findings may reflect different case mixes in the two national cohorts, e.g., 

a more ethnically diverse population in New Zealand than in Denmark. DANCAMI was slightly 

superior in the European cohort that is likely to be more comparable with the Danish population 

compared to the other ethnicity groups in the New Zealand population. 

Major strengths of our study are its population-based design, the large sample size, and 

importantly, an external validation, which indicated that both the DANCAMI and the rDANCAMI 

indices generalize well outside the Danish cohort where it was developed. Furthermore, the 

rDANCAMI allows researchers to study the effect of individual cardiovascular diseases separately 

while adjusting for non-cardiovascular comorbidities. As well, we used recommended methods to 

generate summary scores in our final indices and considered a variety of variables for both indices, 

including psychiatric diagnoses, which are rarely included in comorbidity indices. 

Additionally, the comorbidities included in the DANCAMI/rDANCAMI were identified both 

prior to and during hospital admission, and excluded conditions that could be a direct consequence 

of the MI admission. This approach ensured that all comorbidities were present before the MI 

admission. 

Although we used a five-year look-back period to identify comorbidities and defined variables 

using a variety of approaches (i.e., diagnoses from the index hospitalization, prescription 

redemptions, and laboratory data), misclassification of some conditions must be expected since we 

used routine secondary care data sources.31 Like previous studies,5,10 we found several 

comorbidities that were associated with a decreased 1-year mortality (e.g. stable angina pectoris and 

anxiety) in our multivariable model. These seemingly protective comorbidities could result from a 

coding bias in which severity of overall patient illness may inversely affect the coding of chronic 

and nonfatal comorbidities.10 We therefore excluded these comorbidities from our final indices. 
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Future validation studies are needed to examine generalizability to other look-back periods for 

identifying comorbidities. 

Another concern is that we lacked clinical information, e.g., electrocardiogram results and 

cardiac biochemical markers, which may be important predictors particularly of short-term 

mortality. This is evident in clinical risk prediction models such as the Global Registry of Acute 

Coronary Events (GRACE) risk score32 and may explain the superior performance of our indices 

among patients surviving hospital admission. However, clinical information is often not available in 

routine secondary care data which makes it less useful as predictors in this setting. 

In conclusion, we found that the comorbidity burden is a strong predictor of mortality in MI 

patients and must be controlled for accurately when studying outcomes in these patients. We have 

developed two separate comorbidity indices that can be used to control for the comorbidity burden 

in MI patients; an overall comorbidity index (DANCAMI) showing superior performance compared 

with other commonly used comorbidity indices, and a novel index restricted to non-cardiovascular 

comorbidities (rDANCAMI). The indices have potential to be used for adjusting for comorbidity 

burden in observational studies of MI patients in Western countries similar to Denmark and New 

Zealand. 
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SUPPLEMENTARY 

	
Background 

Prediction studies 

Prediction studies predict outcomes from multiple variables rather than investigating whether a 

single variable may be prognostic,33 and they aim at predicting the probability that an outcome will 

occur in an individual.33 Prediction models are developed to estimate the probability of a future 

event (prognostic prediction model) or the probability that a certain disease or condition is present 

(diagnostic prediction model).34 In medicine, the prognostic prediction model can help assess an 

individual’s risk of developing a specific state of health based on his or her individual risk profile.34 

Prediction models can be developed with different purposes. In a clinical setting, they are 

developed to: inform patients about the future course of their illness; guide doctors and patients in 

decisions involving choice of treatment; or help identify relevant patients for therapeutic research.34 

Examples of clinical prediction models in cardiology are the CHA2DS-VASc-score and HAS-

BLED-score which estimate the risk of stroke or bleeding, respectively, in patients with atrial 

fibrillation. These risk scores are applied when deciding whether or not a patient should receive 

anticoagulation treatment. Another example is the Framingham risk score which estimates 

individuals’ 10-year cardiovascular risk. 

In a research setting, a prediction model can be useful in adjusting for confounding variables in 

observational research where correct adjustment is essential.23 Prediction models are also applicable 

in comparing differences in performances between hospitals.33 When analyzing factors like budgets 

or patient outcome it is important to adjust for case-mix, for example the proportion of severely ill 

patients. 
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Comorbidity indices are developed in prediction studies, and they use comorbidities to predict a 

chosen outcome in a specific population. Comorbidity indices are often used in research to adjust 

for the comorbidity burden between individual patients or patient groups. 

 

Methodological considerations 

Design 

Prognostic prediction studies are inherently longitudinal studies in nature as opposed to diagnostic 

studies, which are often designed as cross-sectional studies.23 To develop our comorbidity indices, 

we conducted a historical cohort study using prospectively collected data. A cohort is defined as a 

group of individuals who are followed over a period of time.35 In a cohort study, you can measure 

the occurrence of one or multiple outcomes and compare these outcomes across baseline 

characteristics of the individual study participants.35 A historical cohort study is conducted from 

previously recorded information and the time of exposure has taken place before the beginning of 

the study.35 In general, a historical cohort study has several advantages: it usually takes shorter time 

to conduct compared with a non-historical cohort study and it is often more cost-effective since the 

information has been gathered beforehand.35 The large amount of different information gathered in 

the Danish registries makes this study design ideal.  

A different study design applicable for prognosis studies are prospective cohort studies including 

randomized clinical trials (RCTs). In a prospective cohort study, the predictors and the outcomes 

are collected concurrently with the conduct of the study.35 Ideally, prognosis studies require a high 

number of outcome events to reduce the risk of overestimating the predictive performance of the 

model;33 it has been proposed that at least 10 events are required for each candidate predictor 

studied.33 This makes studies with longer follow-up time using a prospective study design more 
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expensive and time consuming. Moreover, prognostic models developed from RCTs often have a 

limited generalizability due to factors like strict eligibility criteria for the trial.33 

 

Covariates and data source 

Definition of comorbidity 

The definition of comorbidity is not clearly distinguished, and the concepts of comorbidity, 

complications and multimorbidity are used interchangeably.18 A clear differentiation between the 

concepts is important when they are applied in predictive models as well as causal studies. The 

definitions we applied in our study have previously been proposed: Comorbidities are medical 

conditions that exist at the time of diagnosis of the index disease (the main condition under study) 

and they are not a consequence of the index disease; complications are adverse events occurring 

after the diagnosis of the index disease; multimorbidity is the existence of two or more chronic 

diseases.18 

Still, comorbidity is classified differently in various studies. Some define comorbidities as 

currently active conditions that should have a cogent impact on the prognosis.9 Thus, resolved 

conditions (e.g., previous pneumonia) and a history of operation for current inactive conditions 

(e.g., cholecystectomy) were not included in this definition.9 Other studies emphasize that the 

comorbidity should be present at admission and not be related directly to the main reason for 

hospitalization.36 Moreover, comorbidities are defined as conditions that increase the intensity of 

resources used or increase the likelihood of a poor outcome.36  

For our study, the collective list of comorbidities was assembled from previously applied 

comorbidity lists as well as clinical knowledge. The ICD-10 was thoroughly examined to identify 

all medical conditions that could be considered having an impact on the prognosis after an MI.  
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Extracting data on comorbidity 

For the identification of a patient’s comorbidities, we applied a look-back period of five years 

before hospital admission. 

The sensitivity and specificity of comorbidities cannot be considered perfect when using 

databases to extract the diagnoses since there are diagnoses with relatively low validity, e.g., heart 

failure with a PPV of 76%.37 This means that among those with heart failure in the registry, only 

76% actually have the condition when compared to a reference standard. Another measure of data 

quality is completeness. Completeness is the proportion of true cases with a disease that is correctly 

captured in the registry. Completeness can be measured in relation to all individuals in the general 

population with a specific disease or all patients admitted or treated for the specific disease, and it is 

largely dependent on the sensitivity of the registry.15 When inpatient data alone are used to identify 

comorbidity, the total comorbidity burden may be underestimated.38 Diseases like uncomplicated 

diabetes and chronic pulmonary disease are often treated by the general practitioner and registration 

in the DNPR may be incomplete.15 Therefore, in addition to the ICD-10 diagnosis codes, we used 

LABKA data and prescription data in the DNPR to identify more patients with these diseases. This 

has previously been proposed elsewhere.15 1) In addition to the prognosis codes, we identified 

diabetes from HbA1c >48 mmol/L17 or an antidiabetic prescription.16 2) We supplemented chronic 

pulmonary disease diagnosis codes with any prescription record for a drug used against obstructive 

airway disease.16 3) We defined hypertension as a hospital diagnosis, redemption of combination 

antihypertensive tablets or redemption of at least two prescriptions for antihypertensive drug classes 

within 90 days before admission.39 4) We supplemented diagnosis codes for schizophrenia and 

affective disorder with prescriptions suggesting pharmacotherapy for these disorders in the last 90 

days.16 

 



	 18	

Development of the comorbidity indices 

Management and selection of predictors 

First, we assessed the univariate association between baseline characteristics and 1-year mortality 

adjusted for sex and age. Independently of the univariate analyses, we tested all comorbidities in the 

multivariable analysis. Another approach could have been to only include comorbidities with a p-

value below a desired value to enter the multivariable analysis. However, this approach could lead 

to a wrong inclusion or exclusion of important comorbidities from the final model.40 This is due to 

the fact that the univariate analysis cannot account for possible confounding that may exist between 

the comorbidities and the outcome,40 and a non-significant association in the univariate analysis 

does not always mean that a variable is unimportant.40 

We adjusted for age and sex in both univariate and multivariable analyses because this 

information is always available, and age is a surrogate measure of comorbidity.41 Age was included 

as a continuous variable since more predictive information is retained compared with using 

categorization of continuous variables.42 Age was tested for a linear association with the outcome 

using fractional polynomial approach. When a continuous variable is included as a linear term, it is 

assumed that the effect of an increase by one unit is the same at each part of the range of the 

variable.23 If this assumption is incorrect, it can lead to misinterpretation of the influence of the 

variable. This can affect a model’s overall predictive ability in new patients.42 In our study, we did 

observe a linear association between age and 1-year mortality, and age was included as a linear term 

in all analyses. 

It is expected that mortality is higher in the acute phase after an MI relative to the subsequent 

phase.1 By applying a Cox proportional hazards regression in our analyses, we could account for 

time of death for patients dying within the first year after MI admission. We tested the 
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proportionality assumptions by the global test based on scaled Shoenfeld residuals,25 and plotting 

log(-log(survival)) versus log(time) for variables that appeared non-proportional. 

There exists no consensus on the best method when it comes to variable selection in prediction 

models.42 Our approach was to eliminate covariates with a HR<1.10 or the appertaining 95% CI 

overlapping 1.00. We evaluated implication of this approach by conducting a sensitivity analysis 

using a HR cut-off of 1.20 in our variable selection process.  

 

Weight assignment for summary risk indices 

Weights were assigned to all comorbidities in the final models using the beta coefficients from the 

multivariable models after variable selection. Each beta coefficient was multiplied by ten and 

rounded to the nearest digit which formed the score components for each comorbidity in the final 

indices. This is in line with recommended best practice for risk index-development with studies 

demonstrating better performance of prediction models with this approach compared with hazard 

ratio-based risk indices.26,27 

 

Validation 

Before a prediction model (or a comorbidity index) should be implemented in the clinic or in 

research, it is essential to know if the model is valid and makes accurate predictions. A model with 

high validity makes satisfactory predictions that can be interpreted by the people using it. Assessing 

model performance is essential, which is why a model should be tested for its accuracy and its 

generalizability. Accuracy is the degree to which the model predictions match the observed 

outcome in the same cohort based on which the model was developed. Generalizability is the ability 

of the model to provide accurate prediction in different samples of patients.43  
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Performance measures 

Accuracy can be tested with an overall performance measure like R2. R2 is used to quantify how 

close predictions are to the actual outcome.30 The distance between observed and predicted 

outcomes is related to the concept of “goodness-of-fit” of a model. In a valid model there is a small 

distance between the predicted and the observed outcomes.23 When performance is evaluated in the 

development cohort, it is usually defined as “goodness-of-fit”, while performance measured in a 

cohort that differs from the development cohort is usually defined as predictive performance.30  

Accuracy is also tested in two separate measurements, discrimination and calibration.43 

Discrimination describes the model’s ability to rank patients according to their risk of the outcome. 

If there is an error in discrimination, the relative ranking of the individuals’ risks is out of order.43 

Discrimination is important when the model is used to stratify patients by stage of severity, for 

example when comparing a treatment within different disease stages.43 Calibration describes the 

model’s reliability. If there is an error in calibration, the predicted probability become either too 

high or too low.43 Calibration is especially important when a model is to be used for counseling 

patients.43 Here it is essential that if the model predicts a 90% risk of an outcome, then the outcome 

should in fact occur in nine out of ten patients. The purpose of our comorbidity indices is not to 

counsel patients. Instead, our indices should be applied to adjust for comorbidities in observational 

studies. Therefore, we focused on discrimination and not calibration for the performance measures. 

We assessed discrimination using different measures. First, C-statistic is equivalent to the 

probability that a prediction model assigns a higher predicted mortality to the patient dying first 

than the patient dying last, out of all pairs of subjects.23 For binary outcomes, C-statistic is 

equivalent to the area under the Receiver Operating Characteristic (ROC) curve, a plot of sensitivity 

(true positive rate) against 1-(false-positive rates) for all possible outcomes.30 A straight line with a 
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slope equal to one signifies complete lack of ability to discriminate. The farther the curve lies up 

and to the left of this line, the greater is the model’s discriminating power.44  

Second, continuous net reclassification improvement (NRI) and integrated discrimination 

improvement (IDI) indicate how much a new predictor adds to a model’s ability to discriminate.30 

NRI is based on the concept of reclassification tables. If adding a new predictor to a prediction 

model will give cases (people who will experience the event early) a higher predicted risk and 

conversely give controls (people who will not experience the event) a lower predicted risk, the 

reclassification is successful.29 The continuous NRI is estimated as the difference between the 

proportion of cases moving up and the proportion of cases moving down and the corresponding 

difference in proportions controls moving up and the proportion of controls moving down, and 

taking a difference of these two differences.29  

𝑁𝑅𝐼 = 𝑝&',)*+,-*./ − 𝑝1*2+,)*+,-*./ − (𝑝&',)4/5/ − 𝑝1*2+,)4/5/) 

The IDI integrates the NRI over all possible cut-offs for the probability of the outcome, and it is 

identical to the difference in discrimination slopes of two models.30 Compared to NRI that assigns 

any correct reclassification with 1 point and the corresponding incorrect reclassification with -1 

point, IDI assign to each individual the actual difference in predicted probabilities. IDI can be 

estimated as the difference between the mean predicted probability in cases and control in the 

model with the added predictor (new model) compared with the difference between the mean 

predicted probability in cases and control in the original model (old model).29 

𝐼𝐷𝐼 = 𝑝+52,)4/5/ − 𝑝+52,)*+,-*./ − (𝑝*.1,)4/5/ − 𝑝*.1,)*+,-*./) 

Continuous NRI and IDI were used in addition to C-statistics because improvement in C-

statistics has been argued to be dependent on the baseline model’s ability to discriminate.45 

Compared with a model with low baseline discrimination, a model with good discrimination will 

have a smaller improvement in C-statistics when adding a new predictor, even when the predictor 
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has a strong effect size. IDI is less dependent on the comparator model’s discrimination while the 

continuous NRI has been proven to only be dependent on the effect size of the added predictor and 

not on the strengths of the comparator model.45 

 

External validation 

External validation, also called generalizability, is the ability of the model to provide accurate 

predictions among patients drawn from a different population from where it was developed, this can 

be a different time setting, geographical location, or in a population with a different disease 

composition.43 If a model has low generalizability it may be caused by either underfitting or 

overfitting.43 Underfitting occurs when important independent predictors of outcome are missing 

from the model. Overfitting occurs when the model is influenced by random noise from the 

development dataset.43 We assessed generalizability of our comorbidity indices by examining their 

performances in a cohort of New Zealand MI patients. These analyses demonstrated satisfying 

performance by our indices in the New Zealand MI cohort with better discriminatory ability 

compared with a baseline model containing age and sex. DANCAMI performed approximately 

equally as good as other commonly used comorbidity indices.  

 

Additional strengths and limitations 

In addition to the validity of the prediction model as described above, it is important to discuss the 

validity of the study in general when performing epidemiologic research. In the literature, two 

broad types of error are described: random error and systematic error.35 
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Random error 

Random error is the variability in data that lead to normal variation of an estimate.35 To indicate the 

precision of an estimate, we use CIs which is a range of values around the estimate. Estimates with 

high precision have narrow confidence intervals and estimates with low precision have broad CIs. 

For example: the estimates of the univariate association between comorbidities and mortality have 

various precisions. This is illustrated in the different ranges of CIs. Rare comorbidities like 

hemiplegia have broad CIs and common comorbidities like hypertension have narrow CIs. The 

impact of random error is susceptible to the size of the study population.35 With an increasing study 

population, the precision of the estimates will increase and random error will be reduced.35 

 

Systematic error 

In contrast to random error, systematic error is not susceptible to study population size.35 

Systematic error is divided into selection bias, information bias and confounding.35 

 

Selection bias 

Selection bias arises when the study population is not representative to the population you wish to 

examine in your study, for example if the association between exposure and outcome differs 

between study participants and non-participants.35 If selection of study participants or a loss to 

follow-up depends on both exposure and outcome, it can lead to selection bias. 

As mentioned, we used population-based registries to select study participants for our study. We 

included all patients with a first-time hospitalization for MI in the North and Central Denmark 

regions. The MI diagnosis has been proved to be accurately recorded in the DNPR with a positive 

predictive value of 97%.37 Moreover, we had complete 1-year follow-up, leading to a minimal risk 

of selection bias in our study. 
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Information bias 

Another way to introduce systematic error in research studies is by including erroneous information 

from or about the study participants. If this information causes patients to be placed in an incorrect 

category, the information is referred to as misclassified.35 If the information depends on another 

study variable, the misclassification is said to be differential. If not, the misclassification is non-

differential.35 Non-differential misclassification of a dichotomous exposure will mostly lead to 

dilution of the final estimate with a value closer to “no effect”. Differential misclassification, on the 

other hand, can lead to both overestimation and underestimation of the true effect.35 

In our study, predictors were sex, age and comorbidities. The outcome was 1-year all-cause 

mortality. As regards to the outcome, information on all-cause mortality is very unlikely to be 

misclassified in the Danish registries. With respect to the predictors, information about sex and age 

is also unlikely to be misclassified. However, as described above, information on comorbidities 

from registries may still be incomplete.15 Since the information in the registries is recorded 

prospectively and independently of the study outcome, we have no reason to suspect these errors to 

be directly related to 1-year mortality or be caused by recall bias. However, earlier studies have 

argued that doctors may record fewer comorbidities in severely ill patient admitted to a hospital 

which may result in coding bias.46 Therefore, some comorbidities may be affected by this coding 

bias with coding of chronic and nonfatal comorbidities being inversely related to the severity of 

overall patient illness.10 Thus, patients who are not severely ill will have more of this type of 

comorbidity recorded during a hospitalization. If they in general are in better health, they would be 

expected to live longer, even after an MI. These types of comorbidities would therefore be 

associated with better survival, and the effect on mortality would be underestimated. This may 

explain why some comorbidities in our analyses also seem to be associated with a decreased risk of 

1-year mortality. 



	 25	

Confounding 

Confounding is confusion of effects.35 This implies that the effect of one exposure is mixed with the 

effect of another variable. A confounder is characterized by three things: 1) it is independently 

associated with the outcome; 2) it is associated with the exposure of interest; and 3) it is not an 

intermediate step between the exposure and the outcome.35 Confounding can be minimized by 

applying different methods, either in the design of the study (e.g., randomization, restriction and 

matching) or in data analyses (e.g., stratification, standardization and adjustment).35 

Confounding is a major concern in most observational research. Since randomization is often 

impossible, the studied groups may not be directly comparable. If these differences are not adjusted 

for, it can result in systematic error. Adjustment is essential in this type of research.23 

Contrary to observational research, the goal in prediction models is not to explain whether an 

outcome can be attributed to a particular risk factor. Instead the purpose is to develop a model that 

accurately predicts a certain risk of a future outcome.33 Therefore, predictors in prediction studies 

are not necessarily causally associated with the outcome, and controlling for confounding is not a 

consideration when building a prediction model. In fact, a non-causal factor can be useful as a 

predictor if it can replace a well-known causal factor that is more difficult to measure.33 

 

Additional sensitivity analyses 

We conducted three sensitivity analyses to evaluate how decisions made during model development 

affected the final indices: (1) We changed the HR cut-off from 1.10 to 1.20; (2) We used the exact 

rather than the rounded beta coefficients for score components; and (3) We used the HRs instead of 

the beta coefficients for score components. 

Changing the inclusion threshold to an HR of 1.20 removed all comorbidities with a score of one 

from the DANCAMI models. The modified threshold had very limited effect on the remaining 
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comorbidities or the performance of the models (Supplementary table A). Changing the severity 

weights to precise beta coefficients did not alter model performance either (Supplementary table A). 

However, the models performed more poorly on almost all performance measures when we used 

HRs as severity weights (Supplementary table A). This is consistent with previous research.26,27 

 

Split sample internal validation 

In an additional sensitivity analysis, we performed split sample internal validation.23 Following 

recommendations from the Transparent Reporting of a multivariable prediction model for 

Individual Prognosis Or Diagnosis (TRIPOD) Initiative,34 we split the Danish MI cohort into two 

subcohorts by time (temporal validation) rather than randomly. The two Danish subcohorts included 

a development cohort with all Danish MI patients diagnosed in 2000-2009, and a validation cohort 

with all Danish MI patients diagnosed in 2010-2013. We developed a new complete model and a 

restricted model by fitting the comorbidities from the two DANCAMI models in the development 

cohort. We assessed severity weights from the new beta coefficients, as described previously. We 

then assessed performance in the validation cohort using the same performance measures discussed 

above (R2, C-statistics, IDI and NRI). 

For temporal validation, 1-year mortality was higher in the development cohort (26%) than in 

the validation cohort (21%), but the baseline characteristics were similar (Supplementary table B). 

We refitted both the DANCAMI and the rDANCAMI in the development subcohort. Compared 

with the original indices, six comorbidities received different severity weights in the refitted 

DANCAMI and five in the refitted rDANCAMI, with 7 to 4 and 6 to 3 being the largest changes 

(not shown). When the refitted DANCAMI/rDANCAMI were tested in the validation subcohort, 

they performed better than the CCI and the Elixhauser index (Supplementary table C). 
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Additional discussion and perspectives  

In our performance analyses, we used summary scores to compare the DANCAMI, rDANCAMI, 

the CCI and the Elixhauser index. The CCI and the Elixhauser index have previously been validated 

in MI patient populations to examine their predictive ability in this patient group. In studies 

performed in the US,47 Taiwan,48 and five different European countries,49 the Elixhauser index 

outperformed the CCI in predicting in-hospital47-49 and 1-year mortality.48 These studies differ from 

ours as they included comorbidities as separate variables in their performance analyses instead of 

using a summary score. A Japanese study compared the performance of the CCI and the Elixhauser 

index using individual comorbidities vs. a summary score,50 and found that the Elixhauser index 

performed better with individual comorbidities. However, the CCI and the Elixhauser index 

performed similarly when the summary score was applied. The performances with summary scores 

were generally lower than the performances with individual comorbidities.50 

In observational studies, in which multiple variables often are included in regression analyses, it 

may be best to adjust for a summary comorbidity score due to limited data. In our performance 

analyses of summary scores, the CCI showed better performance than the Elixhauser index in the 

Danish MI cohort. In contrast, the Elixhauser index performed marginally better than the CCI in the 

New Zealand MI cohort. This was also true for the other performance measures. 

This demonstrates that performance of the individual comorbidity indices can vary depending on 

their application. Using comorbidity indices to adjust for comorbidity burden is a useful tool in 

observation research. However, it is also a simplification of the more complex association between 

comorbidities. Researchers should be aware of these limitations when applying comorbidity indices 

and scores in future research. 
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TABLES AND FIGURES 
 

Table 1. Definitions and prevalence of DANCAMI candidate diseases and their effect on mortality in 
the Danish MI cohort (N=36,685) 
 

 
Variables 

 
ICD-10 codes 

Prevalence 
(%) 

Univariate HR1 

(95% CI) 
Cardiovascular diseases    

Stable angina pectoris I20.1, I20.8, I20.9, I25.1, I25.9 6,852 (19) 0.9 (0.9;0.9) 
Heart failure I50, I11.0, I13.0, I13.2 1,603 (4.4) 1.8 (1.7;1.9) 
Cardiomyopathy I25.5, I42, I43 405 (1.1) 1.4 (1.2;1.6) 
Intermittent arterial claudication I73.9 841 (2.3) 1.6 (1.4;1.8) 
Aorta disease I71 458 (1.3) 1.4 (1.2;1.7) 
Deep venous thrombosis in the lower limb I80.1-I80.3 289 (0.8) 1.1 (0.9;1.4) 
Pulmonary embolism I26.0, I26.9 186 (0.5) 1.3 (1.0;1.6) 
Atrial fibrillation I48 2,784 (7.6) 1.3 (1.2;1.4) 
Heart block (atrioventricular block, left 
bundle-branch block, fascicular block) 

144, I45 422 (1.2) 1.1 (1.0;1.3) 

Ventricular tachycardia I47.2 79 (0.2) 1.9 (1.4;2.7) 
Cardiac valve disease I05-I09, I34-I39 1,336 (3.6) 1.5 (1.4;1.7) 
Stroke I60, I61, I63, I64 1,048 (3.8) 1.6 (1.5;1.7) 
Hypertension I10-I13, I15, I67.42 19,389 (53) 1.3 (1.3;1.4) 
Neoplasms    
High-risk cancer C13, C15, C16, C22-C26, C33, C34, C45, 

C77-C79, C92.0, C92.3-C92.9, C95 
631 (1.7) 3.4 (3.1;3.8) 

Lower-risk cancer C00-C12, C14, C17-C21, C30-C32, C37-
C44, C46-C76, C80-C91, C92.1, C93, 
C94, C96, C97 

2,270 (6.2) 1.5 (1.4;1.6) 

Diseases of the blood, blood-forming organs and immune system disorders  
Nutritional anemia D50-D53 607 (1.7) 1.2 (1.1;1.4) 
Coagulopathy and other blood disorders D55-D61, D63, D64, D66-D72, D74-D77 1,783 (4.9) 1.5 (1.4;1.6) 
Immune system disorder D80-D84, D89 15 (0.0) 1.4 (0.6;3.2) 
HIV B21-B24 27 (0.1) 0.5 (0.1;3.6) 
Endocrine, nutritional and metabolic diseases   
Diabetes non-complicated E10.0, E10.1, E10.9, E11.0, E11.1, E11.9 

E12.0, E12.1, E12.9 E13.0, E13.1, E13.9 
E14.0, E14.1, E14.93 

3,141 (8.6) 1.2 (1.1;1.3) 

Diabetes with end-organ damage E10.2-E10.8, E11.2-E11.8, E12.2-E12.8, 
E13.2-E13.8, E14.2-E14.8, H36.0 

2,108 (5.8) 1.7 (1.6;1.8) 

Endocrine disorder (not diabetes) E01-E03, E05, E06.2, E06.3, E06.5, E07, 
E20-27, E31, E32, E34.8, E34.9 

1,096 (3.0) 1.1 (1.0;1.2) 

Obesity E65-E68 621 (1.7) 1.4 (1.2;1.6) 
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Mental and behavioral disorders 
Dementia F00-F03, F05.1, G30 459 (1.3) 1.7 (1.5;1.9) 
Alcohol and drug abuse F10-F19, Z50.2, Z50.3, Z71.4, Z71.5 672 (1.8) 2.0 (1.7;2.3) 
Schizophrenia F20-F22, F25, F28, F294 1,160 (3.2) 1.9 (1.8;2.1) 
Affective F30-F34, F38, F395 4,766 (13) 1.6 (1.5;1.7) 
Anxiety and behavioral disorder F40-F45, F48, F50, F55, F59-F66, F68, 

F69 
156 (0.4) 1.3 (0.9;1.8) 

 
Diseases of the nervous system 

   

Transient ischemic attack G45 859 (2.3) 1.1 (1.0; 1.3) 
Epilepsy G40, G41 334 (0.9) 1.8 (1.5; 2.1) 
Atrophy, degenerative disease or 
demyelination of CNS 

G10-G13, G20-23, G25.5, G31.2, G31.8, 
G31.9, G35-G37, G90, G93.4 

348 (1.0) 1.5 (1.3; 1.8) 

Hemiplegia G81, G82 75 (0.2) 2.1 (1.5; 3.0) 
Diseases of the genitourinary system    
Chronic kidney disease E10.2, E11.2, E14.2, I12, I13, N03, N05, 

N11.0, N14, N16, N18, N19, N26.9, 
Q61.1-Q61.4, Z99.2 

1,576 (4.3) 2.0 (1.9; 2.2) 

Diseases of the respiratory system    
Chronic pulmonary disease J40-J47, J60-J67, J68.4, J70.1, J70.3, 

J84.1, J92.0, J96.1, J98.2, J98.36 
8,015 (22) 1.4 (1.3; 1.5) 

Diseases of the digestive system    
Ulcer disease K22.1, K25-K28 1,087 (3.0) 1.5 (1.3; 1.6) 
Mild liver disease B18, K70.1-K70.3, K70.9, K71, K73, 

K74, K76.0 
209 (0.6) 2.1 (1.7; 2.7) 

Moderate to severe liver disease B15.0, B16.0, B16.2, B19.0, K70.4, K72, 
K76.6, I85 

66 (0.2) 3.0 (2.1; 4.2) 

Inflammatory bowel disease K50, K51 275 (0.8) 1.1 (0.9; 1.4) 
Chronic pancreatitis K86.0, K86.1 71 (0.2) 2.5 (1.7; 3.8) 
Diseases of the musculoskeletal system and connective tissue  
Connective tissue disease M05, M06, M08, M09, M30-M36, D86 1,153 (3.1) 1.2 (1.1; 1.3) 
Bone disorder M80-M83, M85, M86.3-M86.6, M88 1,428 (3.9) 1.2 (1.1; 1.3) 

	
1 Estimated with a Cox regression model adjusted for sex and age 
2 Or prescriptions of antihypertensive drugs (A10A, A10B) 
3 Or HbA1c >48 mmol/L (only in Danish cohort) or prescription for antidiabetic drugs 
4 Or prescription for antipsychotic drug (N05A) 
5 Or prescription for antidepressiva drug (N06A, except N06AX12) 
6 Or prescription for chronic pulmonary disease drugs (R03)	
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Table 2. The DANCAMI model of cardiovascular and non-cardiovascular comorbidities 
 

 
Covariate 

Beta 
coefficient 

 
SE 

Hazard 
ratio 

 
95% CI 

Severity 
weight 

Heart failure  0.320 0.037 1.38 1.28; 1.48 3 
Intermittent arterial claudication 0.229 0. 055 1.26 1.13; 1.40 2 
Aorta disease 0.209 0. 082 1.23 1.05; 1.45 2 
Cardiac valve disease 0.233 0.042 1.26 1.16; 1.37 2 
Stroke 0.254 0.042 1.29 1.19; 1.40 3 
Hypertension 0.121 0.025 1.13 1.08; 1.18 1 
High risk cancer 1.043 0.053 2.84 2.56; 3.15 10 
Lower-risk cancer 0.190 0.036 1.21 1.13; 1.30 2 
Blood disorder 0.127 0.037 1.14 1.06; 1.22 1 
Diabetes non-complicated 0.183 0.034 1.20 1.12; 1.28 2 
Diabetes with end-organ damage 0.315 0.040 1.37 1.27; 1.48 3 
Dementia 0.327 0.063 1.39 1.23; 1.57 3 
Alcohol and drug abuse 0.302 0.080 1.35 1.16; 1.58 3 
Schizophrenia 0.464 0.048 1.59 1.45; 1.75 5 
Affective disorder 0.255 0.027 1.29 1.22; 1.36 3 
Epilepsy 0.287 0.090 1.33 1.12; 1.59 3 
Atrophy, degenerative disease or 
demyelination of CNS 

0.286 0.085 1.33 1.13; 1.57 3 

Hemiplegia 0.577 0.183 1.78 1.24; 2.55 6 
Chronic kidney disease 0.373 0.047 1.45 1.32; 1.59 4 
Chronic pulmonary disease 0.226 0.024 1.25 1.20; 1.31 2 
Ulcer 0.176 0.048 1.19 1.08; 1.31 2 
Mild liver disease 0.286 0.129 1.33 1.03; 1.71 3 
Moderate to severe liver disease 0.664 0.190 1.94 1.34; 2.82 7 
Chronic pancreatitis 0.500 0.207 1.65 1.10; 2.47 5 
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Table 3. The DANCAMI model restricted to non-cardiovascular comorbidities (rDANCAMI) 
 
Covariate 

Beta 
coefficient 

 
SE 

Hazard 
ratio 

 
95% CI 

Severity 
weight 

High-risk cancer 1.041 0.053 2.83 2.55; 3.14 10 
Lower-risk cancer 0.193 0.036 1.21 1.13; 1.30 2 
Coagulopathy and other blood 
disorders 

0.260 0.037 1.30 1.21; 1.39 3 

Obesity 0.248 0.085 1.28 1.09; 1.51 2 
Dementia 0.362 0.063 1.44 1.27; 1.62 4 
Alcohol and drug abuse 0.336 0.080 1.40 1.20; 1.64 3 
Schizophrenia 0.470 0.048 1.60 1.46; 1.76 5 
Affective disorder 0.299 0.027 1.35 1.28; 1.42 3 
Epilepsy 0.392 0.090 1.48 1.24; 1.76 4 
Atrophy, degenerative disease or 
demyelination of CNS 

0.295 0.085 1.34 1.14; 1.59 3 

Hemiplegia 0.637 0.183 1.89 1.32; 2.71 6 
Chronic pulmonary disease 0.265 0.024 1.30 1.24; 1.36 3 
Ulcer 0.247 0.048 1.28 1.16; 1.41 2 
Mild liver disease 0.359 0.130 1.43 1.11; 1.85 4 
Moderate to severe liver disease 0.554 0.191 1.74 1.20; 2.53 6 
Chronic pancreatitis 0.643 0.207 1.90 1.27; 2.85 6 
Connective tissue disease 0.105 0.533 1.11 1.00; 1.23 1 

 
Abbreviation: SE: Standard error, CI: Confidence interval		 	
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Table 4. Characteristics of the Danish and New Zealand Myocardial Infarction cohorts 
 

 Denmark New Zealand 
Number of patients, n (%) 36,685 (100) 75,069 (100) 
Follow-uptime, person years 29,293 63,263 
1-year mortality, n (%) 8,974 (24) 14,951 (20) 
In-hospital mortality, n (%) 5,014 (14) 7,095 (9.5) 
Sex, n (%) 
  Female 
  Male 

 
14,255 (39) 
22,430 (61) 

 
30,514 (41) 
44,555 (59) 

Age, years, Median (IQR) 
>75 years, n (%) 

72 (61-81) 
14,978 (41) 

71 (59-81) 
31,027 (41) 

Prevalent comorbidities 
  Most prevalent, % 
  Second most prevalent, % 
  Third most prevalent, % 

 
Hypertension, 53 
Chronic pulmonary disease, 22 
Stable angina pectoris, 19 

 
Hypertension, 38 
Chronic pulmonary disease, 17 
Diabetes with end-organ failure, 16 

DANCAMI score, n (%) 
  0 
  1-2 
  3-4 
  5+ 

 
10,725 (29) 
10,016 (27) 
7,393 (20) 
8,551 (23) 

 
25,047 (33) 
14,260 (19) 
12,002 (16) 
23,760 (32) 

rDANCAMI score, n (%) 
  0 
  1-2 
  3-4 
  5+ 

 
20,775 (57) 
2,134 (6.0) 
8,201 (22) 
5,575 (15) 

 
39,558 (53) 
4,637 (6.2) 
14,000 (19) 
16,874 (22) 

Charlson score, n (%) 
  0 
  1 
  2 
  3+ 

 
21,893 (60) 
6,515 (18) 
4,232 (12) 
4,045 (11) 

 
37,008 (49) 
8,633 (12) 
11,841 (16) 
17,587 (23) 

Elixhauser score, n (%) 
  ≤0 
  1-5 
  6-13 
  14+ 

 
22,705 (62) 
9,285 (25) 
3,923 (11) 
772 (2.1) 

 
39,427 (53) 
14,559 (19) 
12,363 (16) 
8,720 (12) 

Ethnicity, n (%) NA European, 58,315 (78) 
Maori, 7,544 (10) 
Pacific, 3,915 (5.2) 
Indian, 2,412 (3.2) 
Chinese/other Asian, 1,693 (2.3) 
Other, 1,190 (1.6) 

	
Abbreviation: NA: Not available		 	
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Table 5. Overall performance and discrimination of the DANCAMI indices in the Danish MI cohort 
(development) and New Zealand MI cohort (validation) 
 

 Danish patient registry cohort 
(95% CI) 

New Zealand cohort  
(95% CI) 

R2 
Baseline1 

DANCAMI2 
rDANCAMI2 
Charlson2 
Elixhauser2 

 
0.276 (0.265; 0.287) 
0.332 (0.322; 0.342) 
0.318 (0.307; 0.327) 
0.315 (0.305; 0.325) 
0.306 (0.296; 0.315) 

 
ref. 

1.203 

1.153 
1.143 
1.133 

 
0.282 (0.275; 0.291)  
0.373 (0.366; 0.381)  
0.362 (0.354; 0.369)  
0.372 (0.365; 0.379)  
0.375 (0.368; 0.384)  

 
ref. 

1.323 
1.283 
1.323 
1.333 

Harrell’s C 
Baseline1  
DANCAMI2 
rDANCAMI2 
Charlson2 
Elixhauser2 

 
0.726 (0.721; 0.731) 
0.753 (0.748; 0.758) 
0.746 (0.741; 0.751) 
0.744 (0.740; 0.749) 
0.740 (0.735; 0.745) 

 
ref. 

1.044 
1.034 
1.034 
1.024 

 
0.726 (0.722; 0.730) 
0.773 (0.770; 0.777) 
0.765 (0.762; 0.769) 
0.773 (0.770; 0.777) 
0.774 (0.771; 0.778) 

 
ref. 

1.074 
1.054 
1.074 
1.074 

IDI  
Baseline1 vs. DANCAMI2 

Baseline1 vs. rDANCAMI2 
Baseline1 vs. Charlson2 
Baseline1 vs. Elixhauser2 

 
0.054 
0.038 
0.038 
0.029 

 
- 
- 
- 
- 

 
0.079 
0.068 
0.077 
0.081 

 
- 
- 
- 
- 

NRI 
Baseline1 vs. DANCAMI2 

Cases with increased probabilities 
Cases with decreased probabilities 
Controls with increased probabilities 
Controls with decreased probabilities 
 

Baseline1 vs. rDANCAMI2 
Cases with increased probabilities 
Cases with decreased probabilities 
Controls with increased probabilities 
Controls with decreased probabilities 
 

Baseline1 vs. Charlson2 
Cases with increased probabilities 
Cases with decreased probabilities 
Controls with increased probabilities 
Controls with decreased probabilities 
 

Baseline1 vs. Elixhauser2 

Cases with increased probabilities 
Cases with decreased probabilities 
Controls with increased probabilities 
Controls with decreased probabilities 
 

 
0.519 
49% 
51% 
23% 
77% 

 
0.428 
54% 
46% 
32% 
68% 

 
0.409 
39% 
61% 
18% 
82% 

 
 

0.402 
49% 
51% 
29% 
71% 

 
- 
 
 
 
 
 
- 
 
 
 
 
 
- 
 
 
 
 
 
 
- 

 
0.682 
56% 
44% 
22% 
78% 

 
0.573 
49% 
51% 
23% 
79% 

 
0.582 
54% 
46% 
25% 
75% 

 
 

0.676 
56% 
44% 
22% 
78% 

 
- 
 
 
 
 
 
- 
 
 
 
 
 
- 
 
 
 
 
 
 
- 

1 Baseline model defined as a Cox model including sex and age 
2 All model performances were examined in a Cox model including sex, age & individual model score 
3 Difference in R2 relative to baseline model  
4 Difference in Harrell’s C relative to baseline model 
95% CI for R2 were calculated using 1000 bootstrap replications  
95% CI for C-statistics were calculated using Jackknife 
Abbreviation: Ref.: Reference 
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Table 6a. Sensitivity analysis, results for the Danish MI cohort. Performance in selected groups 
 

  
 
 

Men 
(95% CI) 

  
 
 

Women 
(95% CI) 

  
 

MI patients 
age>75 

(95% CI) 

 Patients 
surviving 
hospital 

admission 
(95% CI) 

  
Danish 
cohort 
overall 

(95% CI) 

 

R2 
Baseline1 

 
DANCAMI2 

 
rDANCAMI2 

 
Charlson2 

 
Elixhauser2 

 
0.316 

(0.301; 0.330) 
0.383 

(0.370; 0.396) 
0.367 

(0.352; 0.380) 
0.361 

(0.348; 0.375) 
0.348 

(0.334; 0.362) 

 
Ref. 

 
1.213 

 
1.163 

 
1.153 

 
1.103 

 

 
0.204 

(0.189; 0.218) 
0.248 

(0.235; 0.262) 
0.236 

(0.222; 0.251) 
0.235 

(0.220; 0.249) 
0.229 

(0.214; 0.244) 

 
Ref. 

 
1.223 

 
1.163 

 
1.153 

 
1.123 

 

 
0.065 

(0.056; 0.073) 
0.119 

(0.109; 0.130) 
0.101 

(0.090; 0.111) 
0.101 

(0.093; 0.112) 
0.093 

(0.084; 0.103) 

 
Ref. 

 
1.833 

 
1.543 

 
1.553 

 
1.433 

 

 
0.360 

(0.345; 0.375) 
0.450 

(0.436; 0.464) 
0.431 

(0.415; 0.445) 
0.428 

(0.414; 0.442) 
0.406 

(0.393; 0.420) 

 
Ref. 

 
1.253 

 
1.203 

 
1.193 

 
1.133 

 

 
0.276  

(0.265; 0.287) 
0.332  

(0.322; 0.342) 
0.318  

(0.307; 0.327) 
0.315  

(0.305; 0.325) 
0.306  

(0.296; 0.315) 

 
Ref. 

 
1.203 

 
1.153 

 
1.143 

 
1.113 

Harrell’s C 
Baseline1 

 
DANCAMI2 

 
rDANCAMI2 

 
Charlson2 

 
Elixhauser2 

 
0.741 

(0.734; 0.748) 
0.772 

(0.766; 0.779) 
0.764 

(0.758; 0.771) 
0.764 

(0.757; 0.770) 
0.757 

(0.750; 0.764) 

 
Ref. 

 
1.044 

 
1.034 

 
1.034 

 
1.024 

 
0.688 

(0.681; 0.696) 
0.712 

(0.705; 0.719) 
0.706 

(0.698; 0.713) 
0.703 

(0.695; 710) 
0.701 

(0.694; 708) 

 
Ref. 

 
1.034 

 
1.024 

 
1.024 

 
1.024 

 
0.597 

(0.590; 0.604) 
0.630 

(0.623; 0.637) 
0.619 

(0.613; 0.626) 
0.619 

(0.612; 0.626) 
0.615 

(0.608; 0.622) 

 
Ref. 

 
1.064 

 
1.044 

 
1.044 

 
1.034 

 
0.764 

(0.757; 0.771) 
0.808 

(0.802; 0.814) 
0.797 

(0.790; 0.803) 
0.801 

(0.794; 0.807) 
0.790 

(0.784; 0.797) 

 
Ref. 

 
1.064 

 
1.044 

 
1.054 

 
1.034 

 
0.726 

(0.721; 0.731) 
0.7523 

(0.748; 0.758) 
0.746 

(0.741; 0.751) 
0.744 

(0.740; 0.749) 
0.740 

(0.735; 0.745) 

 
Ref. 

 
1.044 

 
1.034 

 
1.034 

 
1.024 

 

1 Baseline model defined as a Cox model including sex and age 
2 All model performances were examined in a Cox model including sex, age & individual model score 
3 Difference in R2 relative to baseline model  
4 Difference in Harrell’s C relative to baseline model 
95% CI for R2 were calculated using 1000 bootstrap replications  
95% CI for C-statistics were calculated using Jackknife 
Abbreviation: Ref.: Reference	  
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Table 6b. Sensitivity analysis, results for the Danish MI cohort. Performance in selected groups 
 

 
 

 
 

Men 

 
 

Women 

 
MI patients 

age >75 

Surviving 
hospital 

admission 

Danish 
cohort 
overall 

IDI  
Baseline1 vs. DANCAMI2 
Baseline1 vs. rDANCAMI2 
Baseline1 vs. Charlson2 
Baseline1 vs. Elixhauser2 

 
0.064 
0.047 
0.045 
0.032 

 
0.043 
0.030 
0.030 
0.025 

 
0.049 
0.031 
0.034 
0.026 

 
0.064 
0.046 
0.048 
0.035 

 
0.054 
0.038 
0.038 
0.029 

NRI 
Baseline1 vs. DANCAMI2 

Cases with increased probabilities 
Cases with decreased probabilities 
Controls with increased probabilities 
Controls with decreased probabilities 
 

Baseline1 vs. rDANCAMI2 
Cases with increased probabilities 
Cases with decreased probabilities 
Controls with increased probabilities 
Controls with decreased probabilities 
 

Baseline1 vs. Charlson2 
Cases with increased probabilities 
Cases with decreased probabilities 
Controls with increased probabilities 
Controls with decreased probabilities 
 

Baseline1 vs. Elixhauser2 

Cases with increased probabilities 
Cases with decreased probabilities 
Controls with increased probabilities 
Controls with decreased probabilities 

 
0.552 
50% 
50% 
23% 
77% 

 
0.484 
52% 
48% 
28% 
72% 

 
0.443 
44% 
56% 
22% 
78% 

 
0.427 
47% 
53% 
25% 
75% 

 
0.478 
52% 
48% 
28% 
72% 

 
0.391 
53% 
47% 
34% 
66% 

 
0.434 
45% 
55% 
24% 
76% 

 
0.284 
49% 
51% 
35% 
65% 

 
0.392 
50% 
50% 
30% 
70% 

 
0.265 
53% 
47% 
40% 
60% 

 
0.341 
46% 
54% 
29% 
71% 

 
0.266 
46% 
54% 
33% 
67% 

 
0.636 
52% 
48% 
20% 
80% 

 
0.546 
57% 
43% 
30% 
70% 

 
0.539 
44% 
56% 
17% 
83% 

 
0.475 
52% 
48% 
28% 
72% 

 
0.519 
49% 
51% 
23% 
77% 

 
0.428 
54% 
46% 
32% 
68% 

 
0.409 
39% 
61% 
18% 
82% 

 
0.402 
49% 
51% 
29% 
71% 

 
1 Baseline model defined as a Cox model including sex and age 
2 All model performances were examined in a Cox model including sex, age & individual model score	
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Table 7a. Sensitivity analysis, results for the New Zealand MI cohort. Performance in selected groups 
	

 
  

Men 
 

Women 
 

MI patients age>75 
Patients surviving 
hospital admission 

New Zealand cohort 
overall 

R2 
Baseline1 

 
DANCAMI2 

 
rDANCAMI2 

 
Charlson2 

 
Elixhauser2 

 
0.320 

(0.309; 0.331) 
0.415 

(0.405; 0.425) 
0.406 

(0.395; 0.416) 
0.410 

(0.399; 0.421) 
0.417 

(0.406; 0.427) 

 
ref. 

 
1.303 

 
1.273 

 
1.283 

 
1.303 

 
0.220 

(0.209; 0.232) 
0.307 

(0.295; 0.317) 
0.290 

(0.280; 0.301) 
0.310 

(0.299; 0.321) 
0.308 

(0.297; 0.320) 

 
ref. 

 
1.403 

 
1.323 

 
1.413 

 
1.403 

 
0.081 

(0.074; 0.088) 
0.175 

 (0.165; 0.184) 
0.160 

(0.151; 0.170) 
0.172 

(0.163; 0.182) 
0.173 

(0.163; 0.182) 

 
ref. 

 
2.163 

 
1.983 

 
2.123 

 
2.143 

 
0.338 

(0.327; 0.348) 
0.446 

(0.437; 0.456) 
0.438 

(0.428; 0.447) 
0.438 

(0.429; 0.447) 
0.436 

(0.427; 0.446) 

 
ref. 

 
1.323 

 
1.303 

 
1.303 

 
1.293 

 
0.282  

(0.275; 0.291) 
0.373  

(0.366; 0.381) 
0.362  

(0.354; 0.369) 
0.372  

(0.365; 0.379) 
0.375  

(0.368; 0.384) 

 
ref. 

 
1.323 

 
1.283 

 
1.323 

 
1.333 

Harrell’s C 
Baseline1 

 
DANCAMI2 

 
rDANCAMI2 

 
Charlson2 

 
Elixhauser2 

 
0.741 

(0.735; 0.746) 
0.791 

(0.786; 0.796) 
0.783 

(0.778; 0.788) 
0.789 

(0.784; 0.794) 
0.792 

(0.787; 0.797) 

 
Ref. 

 
1.074 

 
1.064 

 
1.074 

 
1.074 

 
0.693 

(0.687; 0.699) 
0.739 

(0.734; 0.744) 
0.731 

(0.725; 0.736) 
0.742 

(0.737; 0.747) 
0.740 

(0.735; 0.745) 

 
Ref. 

 
1.074 

 
1.054 

 
1.074 

 
1.074 

 
0.606 

(0.601; 0.612) 
0.663 

(0.658; 0.668) 
0.654 

(0.649; 0.659) 
0.662 

(0.657; 0.667) 
0.662 

(0.657; 0.667) 

 
Ref. 

 
1.094 

 
1.084 

 
1.094 

 
1.094 

 
0.754 

(0.749; 0.759) 
0.812 

(0.808; 0.816) 
0.805 

(0.800; 0.809) 
0.808 

(0.804; 0.813) 
0.807 

(0.803; 0.812) 

 
Ref. 

 
1.084 

 
1.074 

 
1.074 

 
1.074 

 
0.726 

(0.722; 0.730) 
0.773 

(0.770; 0.777) 
0.765 

(0.762; 0.769) 
0.773 

(0.770; 0.777) 
0.774 

(0.771; 0.778) 

 
Ref. 

 
1.074 

 
1.054 

 
1.074 

 
1.074 

 
 
1 Baseline model defined as a Cox model including sex and age 
2 All model performances were examined in a Cox model including sex, age & individual model score 
3 Difference in R2 relative to baseline model  
4 Difference in Harrell’s C relative to baseline model 
95% CI for R2 were calculated using 1000 bootstrap replications  
95% CI for C-statistics were calculated using Jackknife 
Abbreviation: Ref.: Reference  
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Table 7b. Sensitivity analysis, results for the New Zealand MI cohort. Performance in selected groups 
 

 
 

 
 

Men 

 
 

Women 

 
MI patients 

age >75 

Surviving 
hospital 

admission 

New Zealand 
cohort 
overall 

IDI  
Baseline1 vs. DANCAMI2 
Baseline1 vs. rDANCAMI2 
Baseline1 vs. Charlson2 
Baseline1 vs. Elixhauser2 

 
0.088 
0.078 
0.082 
0.091 

 
0.071 
0.058 
0.074 
0.072 

 
0.070 
0.058 
0.067 
0.067 

 
0.073 
0.065 
0.065 
0.067 

 
0.079 
0.068 
0.077 
0.081 

NRI 
Baseline1 vs. DANCAMI2 

Cases with increased probabilities 
Cases with decreased probabilities 
Controls with increased probabilities 
Controls with decreased probabilities 
 

Baseline1 vs. rDANCAMI2 
Cases with increased probabilities 
Cases with decreased probabilities 
Controls with increased probabilities 
Controls with decreased probabilities 
 

Baseline1 vs. Charlson2 
Cases with increased probabilities 
Cases with decreased probabilities 
Controls with increased probabilities 
Controls with decreased probabilities 
 

Baseline1 vs. Elixhauser2 

Cases with increased probabilities 
Cases with decreased probabilities 
Controls with increased probabilities 
Controls with decreased probabilities 

 
0.721 
57% 
43% 
21% 
79% 

 
0.579 
51% 
49% 
22% 
78% 

 
0.662 
57% 
43% 
24% 
76% 

 
0.732 
57% 
43% 
20% 
80% 

 
0.590 
55% 
45% 
25% 
75% 

 
0.512 
50% 
50% 
24% 
76% 

 
0.598 
50% 
50% 
20% 
80% 

 
0.610 
54% 
46% 
24% 
76% 

 
0.503 
54% 
46% 
29% 
71% 

 
0.427 
48% 
52% 
27% 
73% 

 
0.503 
54% 
46% 
28% 
72% 

 
0.486 
52% 
48% 
28% 
72% 

 
0.734 
58% 
42% 
22% 
78% 

 
0.640 
51% 
49% 
19% 
81% 

 
0.604 
54% 
46% 
24% 
76% 

 
0.681 
56% 
44% 
22% 
78% 

 
0.682 
56% 
44% 
22% 
78% 

 
0.573 
49% 
51% 
22% 
78% 

 
0.582 
54% 
46% 
25% 
75% 

 
0.676 
56% 
44% 
22% 
78% 

 
1 Baseline model defined as a Cox model including sex and age 
2 All model performances were examined in a Cox model including sex, age & individual model score	
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Table 8a. Sensitivity analysis, results for the New Zealand MI cohort. Performance in ethnicity groups	
	

 
 

European/ 
Other 

 
Maori 

 
Pacific 

 
Indian 

Chinese/  
Other Asian 

R2 
Baseline1 

 
DANCAMI2 

 
rDANCAMI2 

 
Charlson2 

 
Elixhauser2 

 
0.299 

(0.290; 0.308) 
0.385 

(0.377; 0.393) 
0.377 

(0.369; 0.386) 
0.380 

(0.372; 0.388) 
0.383 

(0.374; 0.391) 

 
ref. 

 
1.293 

 
1.263 

 
1.273 

 
1.283 

 
0.227 

(0.198; 0.255) 
0.347 

(0.323; 0.372) 
0.330 

(0.304; 0.356) 
0.361 

(0.337; 0.385) 
0.361 

(0.338; 0.387) 

 
ref. 

 
1.533 

 
1.453 

 
1.593 

 
1.593 

 
0.229 

(0.193; 0.272) 
0.341 

 (0.306; 0.375) 
0.308 

(0.270; 0.345) 
0.342 

(0.307; 0.383) 
0.368 

(0.336; 0.403) 

 
ref. 

 
1.493 

 
1.343 

 
1.493 

 
1.613 

 
0.350 

(0.292; 0.413) 
0.399 

(0.342; 0.453) 
0.387 

(0.328; 0.446) 
0.425 

(0.371; 0.485) 
0.445 

(0.394; 0.501) 

 
ref. 

 
1.143 

 
1.113 

 
1.213 

 
1.273 

 
0.337 

(0.245; 0.435) 
0.391 

(0.309; 0.487) 
0.381 

(0.293; 0.475) 
0.384 

(0.303; 0.482) 
0.416 

(0.336; 0.518) 

 
ref. 

 
1.163 

 
1.133 

 
1.143 

 
1.233 

Harrell’s C 
Baseline1 

 
DANCAMI2 

 
rDANCAMI2 

 
Charlson2 

 
Elixhauser2 

 

 
0.737 

(0.733; 0.741) 
0.780 

(0.776; 0.784) 
0.775 

(0.772; 0.779) 
0.779 

(0.775; 0.783) 
0.779 

(0.776; 0.783) 

 
Ref. 

 
1.064 

 
1.054 

 
1.064 

 
1.064 

 
0.689 

(0.675; 0.703) 
0.758 

(0.745; 0.770) 
0.744 

(0.731; 0.757) 
0.763 

(0.751; 0.775) 
0.764 

(0.752; 0.776) 

 
Ref. 

 
1.104 

 
1.084 

 
1.114 

 
1.114 

 
0.697 

(0.677; 0.716) 
0.755 

(0.738; 0.773) 
0.740 

(0.722; 0.759) 
0.753 

(0.735; 0.770) 
0.766 

(0.749; 0.783) 

 
Ref. 

 
1.084 

 
1.064 

 
1.084 

 
1.104 

 
0.752 

(0.723; 0.781) 
0.776 

(0.748; 0.805) 
0.769 

(0.740; 0.798) 
0.786 

(0.758; 0.813) 
0.797 

(0.770; 0.823) 

 
Ref. 

 
1.034 

 
1.024 

 
1.054 

 
1.064 

 
0.744 

(0.694; 0.794) 
0.772 

(0.724; 0.821) 
0.770 

(0.721; 0.818) 
0.771 

(0.723; 0.819) 
0.783 

(0.738; 0.828) 

 
Ref. 

 
1.044 

 
1.034 

 
1.044 

 
1.054 

	
	
1 Baseline model defined as a Cox model including sex and age 
2 All model performances were examined in a Cox model including sex, age & individual model score	
3 Difference in R2 relative to baseline model  
4 Difference in Harrell’s C relative to baseline model 
95% CI for R2 were calculated using 1000 bootstrap replications  
95% CI for C-statistics were calculated using Jackknife 
Abbreviation: Ref.: Reference 
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Table 8b. Sensitivity analysis, results for the New Zealand MI cohort. Performance in ethnicity groups	
 

 European/ 
Other 

 
Maori 

 
Pacific 

 
Indian 

Chinese/ 
Other Asian 

IDI  
Baseline1 vs. DANCAMI2 
Baseline1 vs. rDANCAMI2 
Baseline1 vs. Charlson2 
Baseline1 vs. Elixhauser2 

 
0.078 
0.069 
0.073 
0.076 

 
0.088 
0.071 
0.099 
0.102 

 
0.078 
0.057 
0.074 
0.095 

 
0.037 
0.031 
0.051 
0.077 

 
0.036 
0.031 
0.029 
0.050 

NRI 
Baseline1 vs. DANCAMI2 

Cases with increased probabilities 
Cases with decreased probabilities 
Controls with increased probabilities 
Controls with decreased probabilities 
 

Baseline1 vs. rDANCAMI2 
Cases with increased probabilities 
Cases with decreased probabilities 
Controls with increased probabilities 
Controls with decreased probabilities 
 

Baseline1 vs. Charlson2 
Cases with increased probabilities 
Cases with decreased probabilities 
Controls with increased probabilities 
Controls with decreased probabilities 
 

Baseline1 vs. Elixhauser2 

Cases with increased probabilities 
Cases with decreased probabilities 
Controls with increased probabilities 
Controls with decreased probabilities 

 
0.688 
56% 
44% 
21% 
79% 

 
0.608 
50% 
50% 
20% 
80% 

 
0.610 
55% 
45% 
24% 
76% 

 
0.665 
55% 
45% 
22% 
78% 

 
0.732 
61% 
39% 
25% 
75% 

 
0.590 
52% 
48% 
23% 
77% 

 
0.728 
61% 
39% 
24% 
76% 

 
0.748 
60% 
40% 
23% 
77% 

 
0.639 
61% 
39% 
29% 
71% 

 
0.477 
48% 
52% 
24% 
76% 

 
0.617 
59% 
41% 
28% 
72% 

 
0.652 
56% 
44% 
24% 
76% 

 
0.570 
55% 
45% 
26% 
74% 

 
0.405 
47% 
53% 
27% 
73% 

 
0.599 
59% 
41% 
29% 
71% 

 
0.639 
53% 
47% 
21% 
79% 

 
0.549 
51% 
49% 
23% 
77% 

 
0.451 
44% 
56% 
22% 
78% 

 
0.415 
46% 
54% 
25% 
75% 

 
0.683 
55% 
45% 
21% 
79% 

 
1 Baseline model defined as a Cox model including sex and age 
2 All model performances were examined in a Cox model including sex, age & individual model score	
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Figure 1. Survival according to DANCAMI score1 (top) and rDANCAMI score1 (bottom) 
 

 

 
 
 
 
1 Score: 0=0 comorbidities, 1=1-2 comorbidities, 2=3-4 comorbidities, 3=5+ comorbidities)  
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Supplementary table A. Sensitivity analysis, results for the Danish MI cohort. Alternative Hazard Ratio 
threshold for inclusion in final models: 1.20, Precise Beta coefficients as score components, and 
Hazard Ratio instead of Beta-coefficients as score components 
 

 HR threshold for 
inclusion: 1.20 

(95% CI) 

Precise Beta 
coefficients 
(95% CI) 

HR instead of beta 
coefficients 
(95% CI) 

R2 
DANCAMI2 
rDANCAMI2 

 
0.332 (0.322; 0.342) 
0.318 (0.308; 0.327) 

 
0.333 (0.324; 0.343) 
0.318 (0.309; 0.328) 

 
0.327 (0.317; 0.337) 
0.314 (0.303; 0.323) 

Harrell’s C 
DANCAMI2 
rDANCAMI2 

 
0.752 (0.748; 0.757) 
0.746 (0.741; 0.751) 

 
0.753 (0.748; 0.758) 
0.746 (0.741; 0.751) 

 
0.751 (0.746; 0.755) 
0.745 (0.740; 0.749) 

IDI 
Baseline1 vs. DANCAMI2 
Baseline1 vs. rDANCAMI2 

 
0.053 
0.038 

 
0.054 
0.039 

 
0.049 
0.035 

NRI 
Baseline1 vs. DANCAMI2 

Cases with increased probabilities 
Cases with decreased probabilities 
Control with increased probabilities 
Controls with decreased probabilities 
 

Baseline1 vs. rDANCAMI2 
Cases with increased probabilities 
Cases with decreased probabilities 
Controls with increased probabilities 
Controls with decreased probabilities 
 

 
0.512 
48% 
52% 
23% 
77% 

 
0.437 
55% 
45% 
33% 
67% 

 
0.507 
49% 
51% 
24% 
76% 

 
0.440 
54% 
46% 
32% 
68% 

 
0.497 
55% 
45% 
30% 
70% 

 
0.451 
60% 
40% 
37% 
63% 

 
1 Baseline model defined as a Cox model including sex and age 
2 All model performances were examined in a Cox model including sex, age & individual model score 
95% CI for R2 were calculated using 1000 bootstrap replications  
95% CI for C-statistics were calculated using Jackknife 
Abbreviation: HR: Hazard Ratio		
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Supplementary table B. Split-sample validation, characteristics of the development subcohort (2000-
2009) and validation subcohort (2010-2013) 
	

 Total Danish MI cohort 
(2000-2013) 

Development subcohort 
(2000-2009) 

Validation subcohort 
(2010-2013) 

Number of patients 36,685 27,716 8,969 
Follow-uptime, person years 29,293 21,837 7456 
1-year mortality, n (%) 8,974 (24) 7,118 (26) 1,856 (21) 
In-hospital mortality, n (%) 5,104 (14) 4,136 (15) 968 (11) 
    
Sex, n (%) 
Female 
Male 

 
14,255 (39) 
22,430 (61) 

 
10,873 (39) 
16,843 (61) 

 
3,382 (38) 
5,587 (62) 

Age, y, Median (IQR) 72 (61-81) 72 (61-81) 71 (60-80) 
Prevalent comorbidities 
Most prevalent, % 
Second most prevalent, % 
 
Third most prevalent, % 

 
Hypertension, 53 
Chronic pulmonary 
disease, 22 
Stable angina pectoris, 19 

 
Hypertension, 52 
Chronic pulmonary 
disease, 22 
Stable angina pectoris, 19 

 
Hypertension, 54 
Chronic pulmonary 
disease, 23 
Stable angina pectoris, 17 

    
DANCAMI score, n (%) 
  0 
  1-2 
  3-4 
  5+ 

 
10,725 (29) 
10,016 (27) 
7,393 (20) 
8,551 (23) 

 
8,213 (30) 
7,684 (28) 
5,537 (20) 
6,282 (23) 

 
2,512 (28) 
2,332 (26) 
1,856 (21) 
2,269 (25) 

rDANCAMI score, n (%) 
0 
1-2 
3-4 
5+ 

 
20,775 (57) 
2,134 (5.98) 
8,201 (22) 
5,575 (15) 

 
15,855 (57) 
1,600 (5.8) 
6,143 (22) 
4,118 (15) 

 
4,920 (55) 
534 (6.0) 
2,058 (23) 
1,457 (16) 

Charlson score, n (%) 
0 
1 
2 
3+ 

 
21,893 (60) 
6,515 (18) 
4,232 (12) 
4,045 (11) 

 
16,543 (60) 
5,019 (18) 
3,176 (11) 
2,978 (11) 

 
5,350 (60) 
1,496 (17) 
1,056 (12) 
1,067 (12) 

Elixhauser score, n (%) 
≤0 
1-5 
6-13 
14+ 

 
22,705 (62) 
9,285 (25) 
3,923 (11) 
772 (2.1) 

 
17,291 (62) 
6,927 (25) 
2,936 (11) 
562 (2.0) 

 
5,414 (60) 
2,358 (26) 
987 (11) 
210 (2.3) 
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Supplementary table C. Split-sample validation in Danish MI cohort, performance of refitted 
DANCAMI in a Danish MI validation subcohort 
	

 Split sample models (2000-2009) tested in 
validation cohort (2010-2013) 

R2 
Baseline1 

DANCAMI2 
rDANCAMI2 
Charlson2 
Elixhauser2 

 
0.312 (0.293; 0.335) 
0.367 (0.348; 0.388) 
0.349 (0.329; 0.371) 
0.359 (0.338; 0.379) 
0.352 (0.331; 0.374) 

 
ref. 

1.183 
1.123 
1.153 
1.133 

Harrell’s C 
Baseline1 

DANCAMI2 
rDANCAMI2 
Charlson 
Elixhauser2 

 
0.742 (0.731; 0.753) 
0.774 (0.764; 0.784) 
0.764 (0.753; 0.774) 
0.766 (0.756; 0.776) 
0.759 (0.748; 0.769) 

 
ref. 

1.044 
1.034 
1.034 
1.024 

IDI  
Baseline1 vs. DANCAMI2 
Baseline1 vs. rDANCAMI2 
Baseline1 vs. Charlson2 
Baseline1 vs. Elixhauser2 

 
0.059 
0.036 
0.044 
0.034 

 
- 
- 
- 
- 

NRI 
Baseline1 vs. DANCAMI2 

Cases with increased probabilities 
Cases with decreased probabilities 
Controls with increased probabilities 
Controls with decreased probabilities 
 

Baseline1 vs. rDANCAMI2 
Cases with increased probabilities 
Cases with decreased probabilities 
Controls with increased probabilities 
Controls with decreased probabilities 
 

Baseline1 vs. Charlson2 
Cases with increased probabilities 
Cases with decreased probabilities 
Controls with increased probabilities 
Controls with decreased probabilities 
 

Baseline1 vs. Elixhauser2 

Cases with increased probabilities 
Cases with decreased probabilities 
Controls with increased probabilities 
Controls with decreased probabilities 

 
0.588 
51% 
49% 
22% 
78% 

 
0.406 
47% 
53% 
27% 
73% 

 
0.475 
43% 
57% 
19% 
81% 

 
0.357 
47% 
53% 
29% 
71% 

 

 

1 Baseline model defined as a Cox model including sex and age 
2 All model performances were examined in a Cox model including sex, age & individual model score	
3 Difference in R2 relative to baseline model  
4 Difference in Harrell’s C relative to baseline model 
95% CI for R2 were calculated using 1000 bootstrap replications  
95% CI for C-statistics were calculated using Jackknife 
Abbreviation: Ref.: Reference	
	


